首页> 外文OA文献 >Two-level Chebyshev filter based complementary subspace method: pushing the envelope of large-scale electronic structure calculations
【2h】

Two-level Chebyshev filter based complementary subspace method: pushing the envelope of large-scale electronic structure calculations

机译:基于两级Chebyshev滤波器的互补子空间方法:推   大规模电子结构计算的包络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe a novel iterative strategy for Kohn-Sham density functionaltheory calculations aimed at large systems (> 1000 electrons), applicable tometals and insulators alike. In lieu of explicit diagonalization of theKohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employa two-level Chebyshev polynomial filter based complementary subspace strategyto: 1) compute a set of vectors that span the occupied subspace of theHamiltonian; 2) reduce subspace diagonalization to just partially occupiedstates; and 3) obtain those states in an efficient, scalable manner via aninner Chebyshev-filter iteration. By reducing the necessary computation to justpartially occupied states, and obtaining these through an inner Chebysheviteration, our approach reduces the cost of large metallic calculationssignificantly, while eliminating subspace diagonalization for insulatingsystems altogether. We describe the implementation of the method within theframework of the Discontinuous Galerkin (DG) electronic structure method andshow that this results in a computational scheme that can effectively tacklebulk and nano systems containing tens of thousands of electrons, with chemicalaccuracy, within a few minutes or less of wall clock time per SCF iteration onlarge-scale computing platforms. We anticipate that our method will beinstrumental in pushing the envelope of large-scale ab initio moleculardynamics. As a demonstration of this, we simulate a bulk silicon systemcontaining 8,000 atoms at finite temperature, and obtain an average SCF stepwall time of 51 seconds on 34,560 processors; thus allowing us to carry out 1.0ps of ab initio molecular dynamics in approximately 28 hours (of wall time).
机译:我们描述了一种针对大型系统(> 1000个电子)的Kohn-Sham密度泛函理论计算的新颖迭代策略,适用于金属和绝缘体。代替在每次自洽字段(SCF)迭代中对Kohn-Sham哈密顿量进行显式对角化,我们采用基于二级Chebyshev多项式滤波器的互补子空间策略来:1)计算一组跨越哈密顿量子空间的向量; 2)将子空间对角线化减少到部分占据状态; 3)通过内部Chebyshev滤波器迭代以有效,可扩展的方式获得那些状态。通过将必要的计算减少为仅部分占据的状态,并通过内部Chebysheviteration获得它们,我们的方法显着降低了大型金属计算的成本,同时完全消除了绝缘系统的子空间对角化。我们在不连续Galerkin(DG)电子结构方法的框架内描述了该方法的实现,并表明这导致了一种计算方案,该方案可以在几分钟或更短的时间内有效地解决具有化学准确性的包含成千上万个电子的本体和纳米系统大型计算平台上每个SCF迭代的挂钟时间的平均值。我们预计,我们的方法将有助于推动大规模的从头算分子动力学的发展。为了证明这一点,我们在有限的温度下模拟了一个包含8,000个原子的体硅系统,并在34,560个处理器上获得了51秒的平均SCF步进壁时间。因此,我们可以在大约28小时(壁时间)内进行1.0ps的从头算分子动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号